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Monsoon precipitation demonstrates a wide range of spatial and temporal variability

in the U.S. Southwest. A variety of precipitation monitoring networks, including official

networks, municipal flood control districts, and citizen science observers, can help

improve our characterization and understanding of the monsoon. The data management

challenges of integrating these diverse data sources can be formidable. Computer

science and data management techniques provide a pathway for the design of forward

looking climate services, especially those developed in collaboration with experts in

this field. In this paper we present such a collaboration, integrating natural, social and

computer science expertise. We document how we identified data networks and their

sources and the computer science and data management workflow we employed to

integrate and curate these data. We also present the web based data visualization tool

and API that we developed as part of this process (monsoon.environment.arizona.edu).

We use case study examples from the Tucson, AZ region to demonstrate the visualizer.

We also discuss how this type of collaboration could be extended to existing or

potential stakeholder collaborations, as we facilitate access to a curated set of data that

gives an increasingly granular perspective on monsoon precipitation variability. We also

discuss what this collaborative approach integrating natural, social and computer science

perspectives can add to the evolution of climate services.

Keywords: climate services, computer science, data science, data visualization, monsoon, precipitation

INTRODUCTION

The North American Monsoon (NAM) is a seasonal phenomenon characterized by increased
precipitation driven by a shift in the mid-level circulation pattern across the western U.S. and
subsequent increase in moisture availability in the Southwest U.S (Adams and Comrie, 1997;
Higgins et al., 1997). The influx of low-level moisture conducive to support monsoon precipitation
emerges and intensifies in late June and declines in late September (Douglas et al., 1993; Maddox
et al., 1995). Previous attempts to characterize the monsoon used the progression of precipitation
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amounts and extent to identify the onset, persistence, and decline
of monsoon related activity, while some local National Weather
Service offices used dewpoint temperature thresholds to identify
the onset of monsoon activity (Ellis et al., 2004). To aid in
messaging and public outreach over seasonal hazards and to
facilitate standardized comparisons of cumulative precipitation
totals, the official National Weather Service definition of the
monsoon was changed in 2008 to the period between June 15th
and September 30th.

Single station metrics using a limited number of stations -
typically a municipal airport or other long term National
Weather Service stations - provide benchmarks that track
the daily and cumulative totals for the monsoon during the
aforementioned standardized seasonal window. This facilitates
comparisons to long term averages and daily and seasonal records
at these stations. Station level monsoon precipitation tracking
stands in as approximations for the location of regional monsoon
activity, allowing for intra- and inter-annual spatial and temporal
comparisons, between geographies and years, respectively. Daily
totals identify the broad outlines of regional variability by
identifying where recent monsoon activity occurred, while the
seasonal (annual monsoon) totals index each year against other
years and climatology. Daily and seasonal totals are some of
the primary metrics used to track the seasonal progression and
rank of each year of the monsoon, while the impacts associated
with extreme events are of great interest to emergency managers,
planners, and flood control district analysts (Shoemaker and
Davis, 2008; Demaria et al., 2019).

The inherent challenge in using stations from around
the region to characterize the monsoon, is that monsoon
precipitation shows considerable spatial and temporal variability
at both the event and annual timescale, and within and across
years (Mullen et al., 1998; Englehart and Douglas, 2006). On
average, the monsoon is the source of up to half of the annual
rainfall in the Southwest during this period (Crimmins, 2006),
but any given seasonal total can vary considerably from the long
term average. The manner in which these cumulative seasonal
rainfall totals are achieved is highly variable in both timing and
intensity. Some years have a lower number of days with rain but
a few highly intense storm events, while other years have more
frequent and regular rain (see Ellis et al., 2004).

Monsoon events (either single days or multi-day precipitation
events) are frequently spatially heterogeneous in both
precipitation extent and intensity within relatively small spatial
bounds (Crimmins et al., 2021). The variability in intensity
is especially relevant in urban areas as it relates to flood risk
potential, where the location and intensity of storm activity can
have dramatic effects, especially during the strongest of storms
(Garcia et al., 2008; Crimmins et al., 2021). This variability makes
characterizing the monsoon a challenge at local scales, given
the steep gradients of spatial heterogeneity observed in single
events or across seasonal totals. This variability is pronounced
even at the finest scales, where a single monsoon event or runs of
storms can produce concentrated and heavy precipitation in one
location, while other locations within the same municipal area
record much less (and sometimes zero) precipitation. This is
sometimes described in local media reports as the “winners and

losers” in a monsoon storm (see NWS El Paso, 2020), or lucky
vs. unlucky when these patterns turn more intense, potentially
dangerous, and occasionally deadly.

Daily and seasonal/annual totals at a single station are one way
of tracking the progression and performance of the monsoon,
but they do not capture fine scale spatial variability. During
single days or across multi-day precipitation events, a single
station is unlikely to be representative for the region, especially
given the range of local variability often seen in monsoon
precipitation. Additionally, precipitation measurements from
official monitoring stations do not generally provide enough
spatial coverage in a region to capture small events or steep
gradients of precipitation variability. Gridded estimates of
precipitation provide full coverage of the region. They range
in spatial resolution from 1 km (MRMS) to 4 km (PRISM) for
freely available products, while 800m (PRISM) data is available
for a fee. Despite offering comprehensive coverage of the region,
these gridded products still may not capture the spatial variability
in precipitation even at the resolution at which the data are
provided, and small events or those with steep gradients in
precipitation intensity are not always well-captured by these
data. This inability to capture and characterize variability, and
overall lack of access to finer resolution data highlights a gap in
regional climate services. Information about the spatial variability
and range of intensity of storm events would be useful across a
range of decision making contexts. This includes flood control
and emergency management (Zanchetta and Coulibaly, 2020),
phenology and invasive species green-up (Wallace et al., 2016),
and irrigation control and water use decisions (Goap et al., 2018).

One solution to this lack of appropriately scaled data
is development-of, or opportunistic sampling-from, dense
networks of precipitation monitoring stations located within
a municipal area. There are emergent research efforts to use
dense networks to better characterize variability in monsoon
precipitation (Demaria et al., 2019; Crimmins et al., 2021), some
of which provide dozens or even hundreds of additional stations
as a supplement to official stations. On the applications side,
flood control districts already use automated sensors to track
precipitation events for flood risk assessment and monitoring.
Other sources are also available, including NOAA-COOP,
Mesowest, citizen science monitoring data (e.g., CoCoRaHS and
Rainlog) and gridded-interpolated or radar-derived estimates
(such as PRISM orMRMS). Amix of these data are already in use
in an ad hoc manner by both researchers and decision makers to
describe monsoon events, especially larger impact events shortly
after they occur.

These networks of station data are useful for analyzing
monsoon events. Their density, especially when multiple
networks are used in tandem, begin to capture some of the
variability of smaller monsoon precipitation events. There are a
few challenges for using these networks of sensors: (1) they derive
from multiple sources with different mechanisms for presenting
or giving access to the data, and (2) they record data over
different windows of time. Assessments of these networks and
their timing identified the varying windows of date attribution
for the different networks (Figure 1; note the dates listed on
this figure were how we documented the challenges in temporal
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FIGURE 1 | Date and timing windows for station based observations and gridded precipitation estimates.

FIGURE 2 | Database architecture of the main metadata table.

attribution using a specific date that illustrated the variable
timing of the different networks). This highlights the challenge
of integrating data that was captured on either calendar date
(midnight to midnight) or another temporal window (12z−12z,
etc.). Integrating these data into decision making contexts
or research applications poses an inherent data management
challenge for processing and analyzing data from these sources.
To date, there is not a singular platform that organizes these data
in an accessible way.

This project originated based on our own use of these data,
and our observation that others in the regional stakeholder and
collaborator network were using these data in an opportunistic
way. This included daily precipitation summaries, examples of
precipitation variability within the metropolitan region, or in
identifying regions with possible-to-likely flooding impacts. We
felt that a central repository that brought together these data
sources would be useful for our own research and climate services
development, and would also serve as a value-add to stakeholders
in our network (cf. Mahmood et al., 2017) who were grappling
with similar or related questions about monsoon variability.
We also hoped this would also serve a bridging function (see
boundary objects/organizations: Lemos et al., 2014) that brought

together new partnerships or collaborations centered on the use
of these aggregated data. We developed a platform that allowed
for visualization-of and access-to these data.

We recognized the complexity of aggregating data from
multiple sources, developing a workflow to manage and store
these data, and the need for a robust visualization platform
using these data. This was a computer science and data
management driven challenge as much as it was a question of
climate services development. This helped catalyze activity in
our UArizona research computing working group. This group,
located within the Arizona Institutes for Resilience (AIR) is
focused on research collaboration and technology development
at the intersection of natural, social, and computer sciences.
The monsoon variability provided a reason, and computer
science and cloud computing techniques provided a mechanism,
to collaborate across disciplines to address the computational
and data-organizational challenges of scraping, querying, and
visualizing these data in a way not previously possible via ad hoc
use-of or access-to the data. We also prototyped an Application
Programming Interface (API) for eventual use by stakeholders
interested in accessing the data stored and visualized in this
platform. An API is a programmatic interface developed to allow
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requests to an external application or data set. An API enables
users to send or receive data dependent on the API’s intended
design and function.

In this paper, we present the process by which we aggregated
and organized precipitation data from multiple sources. We
summarize the development of a web based data visualization
tool that synthesizes and visualizes station based precipitation
monitoring data in conjunction with MRMS derived gridded
estimates of precipitation. Our initial goal was to develop a
monsoon event-viewer for use in visualizing and analyzing
monsoon variability after daily or multi-day events. We added
database and API development to facilitate data access both
within our stakeholder network on partnered projects and
outside this network via API access. We present a climate
services-motivated question and posit that access to increasingly
granular data about monsoon precipitation events using a
computer science informed approach adds value in the climate
services context and demonstrates what a collaborative project
between these fields looks like. In the following sections we
outline the process by which we aggregated and organized the
data and describe what the monsoon event viewer looks like
in practice. We also discuss preliminary analyses of monsoon
activity using these data. We conclude with a discussion
of the potential-for and limitations-of collaborations between
climate services and computer science. This includes application
development and directions for future work.

MATERIALS AND METHODS

The framework for this project emerged during our own initial
attempts to collect and organize data from various sources
and sensors around the region. We identified and summarized
the data sources, including information about their window
of data capture and approximate availability, and developed a
preliminary scraping schema for some of the data. This process

was not systematic or easily replicable, and was limited to
our opportunistic samples of data based on what was easily
obtainable. This made clear the need for a strategy to organize,
analyze, and visualize these data, and is a major reason we
expanded our team to include computer science and application
development expertise.

The following section gives a plain language overview of
the technical steps involved in this process. We start with the
overall structure and architecture of the platform and database
architecture, before we provide additional details on each of the
relevant steps in building the database, organizing the data, and
developing the web-based visualization platform. This section
outlines technical challenges, and the solutions we employed in
each step of the platform development process. We also briefly
describe preliminary case study analyses we used as a test run
for the platform, before moving on to the results of these tests.
In the discussion section we further address challenges and
opportunities of bringing together computer science expertise
and climate services development.

Data Collection
Overview and Database Architecture
This section includes technical information about the
development of the database architecture, the data scraping
and organization schema, and the backend database and
frontend web visualization technologies. It is presented to
document the steps to replicate or adapt these processes. For
those interested in the monsoon viewer but not the mechanisms
that built it, we suggest skipping to section Results.

One of the first challenges faced was developing an automated
and repeatable process for gathering and storing rainfall data.
We had multiple flood control district (FCD) and rainfall data
sources independently run by the state of Arizona, individual
counties in Arizona, and research programs. We organized
these data sources into networks which we named Pima FCD,

FIGURE 3 | Database architecture of the rainlog metadata table.
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Maricopa FCD, Rainlog, Mesowest, and State FCD. The database
containing the sensor data for each network is housed within an
Amazon Web Services (AWS) service called Relational Database
Service (RDS). RDS is Amazon’s scalable cloud-based hosting
solution with multiple database engine offerings and can be
optimized for memory or read/write performance. This project
utilizes the MariaDB engine which is an open source relational
database engine from the developers of MySQL (see glossary
for details on the various referenced technologies). The database
contains a total of 10 tables. Each network requires two tables
for housing sensor metadata and rainfall readings. The metadata
table consists of latitude and longitude coordinate locations,
the date the sensor first came online, a unique sensor ID,
a name which is usually relevant to its geographic location,
and sensor type. Figure 2 is a screen capture that displays
architecture details of the metadata table. Rainlog, a self-
report citizen science network, has a slightly different metadata
architecture that incorporates a revision_id field. In the event
a Rainlog user moves, this field is used to associate users back
to their original sensor_id field with new latitude and longitude
location. The table details are found in the screen capture
in Figure 3. The sensor readings table contains the rainfall
reading data from each sensor in each network. The database
structure consists of a primary key reading_id, sensor_id that is
a foreign key to the metadata table sensor_id, the reading_value
the sensor reported, reading_date, reading_time, and if the
data is considered anomalous for the network value. Figure 4
is a screen capture that includes the details for the sensor
readings table.

Discovery
While investigating the public frontend websites of the networks,
we found the county and state FCD networks were utilizing
the same commercial product. This commercial product gathers
and stores readings from the remote sensors located throughout
each network’s monitoring region and has a built-in frontend

web interface used to present the data on county or state-
maintained websites. The challenge in gathering the data from
the state and county sensor networks is each was technically
implemented in a different manner from the next while still
being an implementation of the same underlying commercial
product. We also discovered that the state FCD network lacks a
public API that could have been used tomake programmatic calls
from various programming languages to gather data. Whereas,
Rainlog and Mesowest both have APIs we query for data (note:
we integrated data from the Mesowest repository using the
SynopticsLabs API).

Data Scraping
From our discovery process we learned the only way to source
the data for the state and county sensor networks was through
their web frontends since they lack an API. Through these
frontends we programmatically identified individual sensors on
a per network basis. We then created database tables per network
containing metadata for each network’s sensors. These tables
contain data such as unique sensor IDs, latitude and longitude
coordinates, and when a sensor first came online. We then
use these network tables to programmatically iterate through
each identified sensor to gather reading values from the sensor’s
specific web frontend. In order to gather that rainfall reading
data, we utilize Python and a module called BeautifulSoup. We
identify the relevant elements that make up the web frontend of
each sensor’s specific readings page such as reading values, date,
time, and if the sensor detected an anomaly in the reading value.
Python and BeautifulSoup then programmatically scrapes that
data and stores it in our RDS MariaDB instance. This process
repeats per sensor in each network table for Pima FCD, Maricopa
FCD, and State FCD.

In addition to developing a data scraping solution for the
county and state networks, we also discovered the frequency
at which we gathered the data was important. The Maricopa
FCD network would return a daily total per sensor for the
previous day without incremental readings throughout the day.

FIGURE 4 | Database architecture of the sensor readings table.
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We found if we scraped the data every 60 minutes, we would
capture incremental readings every 15min. This is important to
understanding rainfall frequency in certain areas of the network’s
geographic region. The Pima FCD network reported at varying
frequencies depending on which sensors detected rainfall. A
typical reporting frequency during a rainfall event was every
5min. We find this reporting frequency important because of the
opportunity it provides to perform a near real-time analysis of
the readings. The flexibility of the AWS platform allows us to run
our Lambda scripts at user defined frequencies. This means we
could gather rainfall data at faster intervals for more immediate
data processing such as predictive modeling for severe weather
events or flooding.

Gathering data from the Rainlog and Mesowest networks was
a different process because both have APIs in place that allow for
data to be requested directly from the network. This is done by
creating an account with the network and requesting an API key,
which in turn allows for request calls to be made directly from
a Python script. Rainlog required two different calls to be made.
One of them was to request all revision IDs within a given region.
A region is defined by drawing a shape between latitude and
longitude points. Since Rainlog allows users to move locations
and keep the same account, revision IDs represent a way to track
the latest sensor ID, along with its latest location. After the call
to request revision IDs is made, a second call is made to request
rainfall data for all sensors in a region using a date range as a
parameter. Mesowest worked in a similar way, where a region is
defined, and rainfall data was requested for a certain date range.
The main difference was that stations did not change location
and there was no need to make multiple calls. Finally, after the
Lambda functions run for each of these two networks, the data
obtained is then added to a MariaDB database within RDS.

Data Visualization
The intention of the data visualization is to aggregate the
collected data and model it in a meaningful manner while
providing a straightforward user experience. This is done in
two phases, the backend API, and the web application frontend.
These phases make use of an S3 Static Web Hosting Bucket, an
EC2 Instance virtual machine, and an RDS MariaDB database all
provided by AWS used in tandem as shown by the control-flow
diagram in Figure 5.

Backend API
The backend API serves as a control center for the entire
data visualization application. Built with Node.js using the
Express framework, the API will accept RESTful queries detailing
(1) what network is to be shown, (2) what date or date
range, (3) and whether MRMS gridded data is to be returned.
Supplementary Table 1 lists the services and versions used to
create the backend API.

During a query in whichMRMS data is not requested, the API
will make a query to the AWS RDS database for the user selected
dates and networks. When the data is delivered back to the API it
is in a raw format and represents how much rainfall a sensor has
collected at the time of reporting. This is the case for the Pima
FCD, Maricopa FCD, State FCD, and Mesowest networks. The

Rainlog network is a special case as the reported values are how
much it had rained for that 24-h period. Once this raw data is
retrieved it is filtered, formatted, and a delta calculation will be
performed (Pima FCD,Maricopa FCD, State FCD andMesowest)
resulting in the amount of precipitation that fell for the requested
period. During this stage, specifically the delta calculation for the
FCD networks, special conditionals will look for any anomalous
readings that may be in the data. This check on the readings delta
was only in place for the FCD stations, as the other networks
presumably have their own QA/QC measures. Anomalous data
for the FCD networks are counted as any two readings whose
change results in a negative value (i.e., the sensor tipped over
to empty its’ collection tank) or the change results in a value
greater than a specified threshold.We reviewed historical records
for the FCD networks, which revealed large delta errors were
exceedingly rare, and in some cases, preceded instances where
the sensor was taken offline for repairs or stopped recording
altogether. The threshold value was designed to filter out extreme
readings that were due to clear and obvious errors in the data
or sensor operation. A comprehensive review of the different
networks is outside the scope of this paper, but we are working
on an analysis that assesses the different station networks, so as
to better understand their observations in comparison to other
networks, as well as to gridded estimates of precipitation.

After all the data has been formatted, filtered, and the delta
calculation has been performed, the API will then merge each
sensor’s rainfall data with its geospatial data. The geospatial data
is collected from a cronjob executing at 12:00 UTC daily, which
is then written to a specific file contained locally on the AWS EC2
Instance. At this stage the data has been formatted in an array of
JSON objects, where each JSON object contains the precipitation
amount, the sensor name, and the latitude and longitude for each
sensor which is then sent back to the web application frontend.

The MRMS data retrieval and processing are a separate
process from a network precipitation query as described above. A
cronjob executed daily at 12:00 UTC calls a Python script which
(1) retrieves a raw binary GRIB2 file from the MRMS website,
(2) crops a bounding box around Arizona and New Mexico, (3)
converts the GRIB2 file to a readable NumPy array using PyGrib,
(4) names and stores a compressed NumPy array file representing
the rainfall for the previous day’s 24-h period from 5:00 a.m. to
5:00 a.m. Arizona time. On a request for MRMS data from the
web frontend, similar to a network precipitation request, the
Node.js API will accept and parse the request, yet it will then
execute a Python script detailing the request day for the MRMS
data. This Python script will (1) read the compressed NumPy
array (which contains point data 4 km apart from each other
with geospatial data in a Web Mercator mapping), (2) convert
each Web Mercator point into a latitude and longitude, (3) and
write an array of JSON objects that is then sent back to the
web frontend.

On any given day, the EC2 Instance stores the past week of
MRMS data locally in its compressed NumPy array format, and
the current day’s MRMS data in an array of JSON objects that
is readable by the web frontend. This is done as a “storage safe
saving solution” as the compressedNumPy arrays range from 4 to
5MB while the uncompressed array of JSON objects on average
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FIGURE 5 | Amazon web services control flow diagram.

range from 50 to 55MB in size. The theory is that a user is more
likely to look at the current day’s MRMS data than a historical
date, therefore, the backend API can send the file on demand
rather than processing a historical MRMS file which in turn takes
more compute time.

Frontend Web Application
The intention of the frontend is to visualize the data in a
meaningful manner while providing a straightforward user
experience. This is done by utilizing the React Framework where
a component-based paradigm is used, such that every element
in the DOM (Document Object Model) can be represented as a
React “component.” All these components are then compiled in
a hierarchal manner into one main “parent” component which
represents the overall webpage. Supplementary Table 2 is the
complete list of dependencies that the React application utilizes.

The main component of the webpage is built using the Deck.gl
data visualization library. Our Deck.gl component uses a base
layer of a static Web Mercator map (provided by the MapBox

API) and a default “icon layer” visible when the webpage is
loaded. This layer uses symbolic representation to display (1) how
much precipitation each sensor received (via its color) and (2)
which network the sensor belongs to (via its symbol). This data is
collected via HTTPS requests to the backend API specifying what
date/date range and what networks to display. By default, the
web application will make a request for the Pima FCD network’s
data for the day before upon a user visiting the website. Any
other request for either MRMS or another network’s data will be
a separate HTTPS request to the backend.

Before the React application is sent to AWS S3 for hosting,
the application will go through a compiling process to improve
the overall performance of the website. This process is done
by React’s build feature. The build process will (1) use the
transcompilier Babel to convert the ECMAScript 2016 (ES6)
JavaScript into a version that is compatible with all web browsers,
and (2) combine all the separate JavaScript components and
Cascading Style Sheets (CSS) into one single file. Combining the
JavaScript and CSS will allow the client to make less HTTPS
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FIGURE 6 | Tucson Metropolitan Region Total Precipitation - Jul 8-10, 2018 - Highly Variable Cumulative 3 Day Totals.

requests upon loading the webpage. Once the build process has
finished, the compiled built application will be uploaded to an
AWS S3 Bucket configured for static web hosting using the “AWS
Sync” function on the AWS CLI (Command Line Interface).

Testing the Monsoon Visualizer
To test the utility of the monsoon viewer and database/API,
we used a case study examples to illustrate events where the
database/viewer is well-suited to capture precipitation variability
not well-characterized elsewhere. We also used maps of annual
totals, plots of the range of variability across these totals,
and inter-annual comparisons to briefly illustrate how further
exploration of the database/API could look to monthly or
seasonal typologies of monsoon activity. In the results below,
we present these examples of how snapshots of daily or event
data (maps and plots), along with seasonal summaries and inter-
annual comparison plots, can all illustrate various temporal scales
of monsoon variability. In the discussion we speak to possible
applications of these data.

RESULTS

The results we present here demonstrate the strength of
systematic aggregation of monsoon data, as well as the utility
of making these data available in an intuitive/visual platform.
This aggregated data captures aspects of monsoon variability

that are not represented by single station metrics, and analysis
and visualization of these data is not easily possible without a
centralized database and visualization platform. The monsoon
viewer itself is live at monsoon.environment.arizona.edu.
Version 1.0 of the viewer includes daily precipitation totals from
the Pima and Maricopa Flood Control District sensor networks,
Mesowest, and Rainlog. The viewer also includes MRMS/radar
derived estimates of precipitation for the previous seven days.
Data visualization options include selection of one or more of
the station networks, summarization of these data via a heat map
and hex map visualization function, and MRMS gridded data
(for the previous seven days). All data presented in the viewer are
available for download as a CSV file that contains the coordinates
of the station, the name of the network and sensor, and the daily
total precipitation for the date specified.

Exploring Recent Precipitation Events With
the Monsoon Viewer
In early July 2018, heavy and localized rain to the northwest
of Tucson (but within the Tucson Metropolitan region) caused
intense localized flooding and a train derailment. Over a 3-day
period station totals in the Tucson Metropolitan area ranged
from over 7 inches to at or near zero (Figure 6), while the Tucson
International Airport (the National Weather Service station used
for long term statistics and monitoring), recorded 0.09 inches
over the same 3 day window. This event highlights the extreme
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variability that can be observed over a single day or short run
of days during the monsoon (note: the single day totals for July
8 and July 10 exhibit similar variability). This also highlights
events where antecedent conditions could help inform decision
making and planning. The single day totals were impressive,
but flood risk is also linked to cumulative conditions when
multiple intense events stack up, particularly when they hit the
same locations.

In July 2020, a much more widespread precipitation event
was notable for the intense precipitation that fell across a
larger swath of the city (Figure 7), along with the steep
gradient as precipitation levels dropped off. A mere 0.15′′ of
precipitation fell at the Tucson International Airport station,
which is ∼10 miles away from the station that recorded the
highest daily total. Note there are a small number of events
in the period of record when the airport receives at or near
the highest daily total; even when much of the city sees little
precipitation. This is not meant to question the use of the
airport as a standard metric, but merely to illustrate what a
fine-grained data viewer can capture, especially at the daily or
event timescale.

This widespread activity on July 23 is also a good example
of a few of the beta features in the monsoon viewer – namely
the heatmap visualization, which aggregates station data into a
continuous surface (Figure 8), and the hex map visualization,
which uses the precipitation values to map data on the z-axis,
adding a 3rd dimension to these data (Figure 9). These are
prototype features of the visualizer but offer alternatives to the
point-based data visualization.

In late August 2020, a small precipitation event popped up
in the afternoon. Most of the city recorded zero precipitation,
but a small but intense storm was observed on the western edge
of Tucson. A small number of stations recorded over 0.5′′ of
precipitation (Figure 10), but the storm was very limited in its
extent. The monsoon viewer also includes recent MRMS data
(within the last 7 days) to display the radar derived (gauge
corrected) estimate of precipitation. For more widespread events,
this offers an opportunity for ad hoc comparisons of point/station
vs. gridded estimates of precipitation, but for the purposes of the
viewer, it helps demonstrate instances when precipitation events
are only captured in the station data. Figure 10 also includes the
MRMS estimates as an overlay. Only one cell in the metropolitan
area had an estimate over 0.00′′.

The inclusion of the MRMS data is also useful for a regional
perspective, especially in locations where few if any weather
stations are located. On August 30, daily forecasts indicated
potential widespread and intense storm activity for the Tucson
Metropolitan Area. These events did build and develop, but not
quite as far east as some of the forecasts had initially suggested.
Figure 11 shows the relatively limited precipitation that was
recorded in the Tucson area, while the much more intense
storm activity to the south and west is captured by the MRMS
precipitation estimates. There are few stations located in this
rural area, so the combination of station data in more densely
covered areas in conjunction with the coarser estimates from
MRMS, helps fill in information about where precipitation did
(and did not) fall.

Inter-annual Comparisons
In addition to daily or event-based precipitation visualizations,
the database (and particularly the Pima Flood Control District
data, some of which goes back to the mid-1980’s) also allows
for some provisional comparison across years. This inter-annual
comparison blunts some of the daily spatial variability, but these
data summaries speak to what is sometimes referred to as the
character or flavor of a given monsoon year.

A few of the most recent years are a helpful comparison
to illustrate this use of these data. 2017 was widely regarded
as a good year for the monsoon in Tucson. The Airport total
was 8.57′′, well above its long-term average of ∼6.1′′. Across
the region stations also recorded precipitation at or above the
airport’s long-term average (Figure 12, top). Looking at the
seasonal progression of events, these impressive totals were
mostly the result of a pulse of very active monsoon precipitation
in mid-to-late July, with one large event in August (Figure 12,
bottom). 2018 by comparison, had both an early start with
tropical storm Bud bringing precipitation to the region on June
15–16, a run of lighter but more regular monsoon activity for
much of July and August, and then was capped with another
tropical storm incursion in mid-September (Figure 13). Even
though the airport recorded just over 7′′ of rain in 2018 and had
regular activity, it lacked the run of intense activity as was seen
in 2017. Ongoing research within CLIMAS is using the monsoon
viewer database to explore these spatial and temporal patterns in
small scale monsoon precipitation events, and their connection
to patterns and drivers of regional monsoon activity.

Looking across multiple years of data, the percent of stations
recording precipitation also helps fill in our understanding
of how widespread monsoon activity was in the Tucson
Metropolitan Region (Figure 14). This analysis is preliminary,
and in conjunction with the spatial/temporal information
mentioned above, is part of our larger and ongoing effort
to use this database/viewer to illustrate regional precipitation
variability. Our goal is to analyze and communicate not
just how much precipitation fell at a given location, but
how widespread these events were, and what this means
for various applications that would benefit from granular
spatial estimates (or longitudinal temporal characterizations) of
monsoon precipitation.

DISCUSSION

Despite a standardized seasonal definition that outlines the
temporal boundaries of the monsoon across the Southwest,
monsoon variability is challenging to accurately characterize at
fine scales on the order of cities to neighborhoods. The monsoon
viewer presented above characterizes monsoon precipitation
variability in the U.S. Southwest, at scales that are not possible
with single station metrics, and with a density of data that
is not available in gridded datasets. Our initial goal for this
platform was an improved characterization of fine-grained
monsoon variability, informed by gaps and priorities of local
stakeholders interested in updated and increasingly granular
data about monsoon variability. We opportunistically focused on

Frontiers in Climate | www.frontiersin.org 9 April 2021 | Volume 3 | Article 602573

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


McMahan et al. Computer Science and Climate Services

FIGURE 7 | Tucson Metropolitan Region Total Precipitation - Jul 23, 2020 - Widespread Event with Steep Dropoffs in Total Precipitation.

metropolitan regions with these larger networks of observations,
and where there are known priorities for research applications or
decision support. Our project analyzes the patterns we observe
in the data and what it means for ongoing or potential research
applications. Our project is also focused on the need for data
curation and the role that computer science plays in helping
integrate and visualize diverse and sometimes messy data cannot
be underestimated.

This focus on metropolitan regions highlights a limitation
of this approach, given dense sensor networks are typically
only found in metropolitan regions such as Tucson (or
Phoenix, Flagstaff, Albuquerque, El Paso, etc.), where there
are sufficient sensors to offer additional granular information
about precipitation variability. The inclusion of citizen science
networks increases station density, but does little to significantly
expand the extent of the networks, as many of these observers
are also found in metropolitan regions. We added MRMS data
to check the correspondence between point based (station)
and gridded (radar derived) estimates of precipitation and
to fill in gaps where few stations were found. A systematic
comparison between these sources (see Westcott et al., 2008
for an example) is beyond the scope of this paper, but is
part of a larger research project we have underway using
these data. Despite the limited spatial extent of these data,
these dense networks of observation can contribute to an
improved understanding of fine-grained monsoon variability,

identifying any coherent patterns that may exist at a regional,
municipal, or even local neighborhood scale. This reflects
emergent interest in targeted and fine scale analysis of weather
and climate impacts, especially in urban and metropolitan
contexts, as well as the decision making contexts that could be
informed by these data and information (see Baklanov et al.,
2018).

There are a number of contexts where these data could inform
ongoing or future applied research, preparedness and emergency
response activities, or long term planning and recovery efforts.
What follows is a brief overview of collaborative applications
either planned or underway.

An initial collaborator on this project was the National
Weather Service office in Tucson, which indicated interest in
a “monsoon event viewer” that stitched together station based
precipitation data with the radar derived gridded estimates of
precipitation from MRMS. Our ongoing work is assessing the
correspondence between precipitation estimates in established
sensor networks (e.g., Mesowest, RCC-ACIS), opportunistic
sensor networks (e.g., flood control districts), citizen science
observations (CoCoRaHS and Rainlog), and gridded data
(including PRISM and MRMS estimates of daily and seasonal
precipitation). Our goal is not to assess the accuracy of these data,
but to see how well they correspond and if there is any indication
as to best practices for assimilating multiple sources, types and
scales of data.
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FIGURE 8 | Tucson Metropolitan Region Total Precipitation - Jul 23, 2020 - Example of Heat Map Function of Monsoon Viewer.

FIGURE 9 | Tucson Metropolitan Region Total Precipitation - Jul 23, 2020 - Example of Hex Grid (3D) Function of Monsoon Viewer.
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FIGURE 10 | Tucson Metropolitan Region Total Precipitation - Aug 27, 2020 - Isolated Storm Event with Limited Data Coverage.

FIGURE 11 | Pima County Region Total Precipitation - Aug 30, 2020 - Isolated Precipitation in Tucson Metro Area with Limited Data Coverage but with Heavy

Precipitation in MRMS estimates in Western Pima County.
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FIGURE 12 | Map of Tucson Metropolitan Region 2017 Monsoon Total Precipitation - (Jun 15 - Sept 30) (map, top) and Range of Daily Precipitation (Jun 15 - Sept

30) compared to Tucson International Airport (boxplot, bottom).
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FIGURE 13 | Map of Tucson Metropolitan Region 2018 Monsoon Total Precipitation - (Jun 15 - Sept 30) (map, top) and Range of Daily Precipitation (Jun 15 - Sept

30) compared to Tucson International Airport (boxplot, bottom).
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FIGURE 14 | Daily Percent of Stations Recording Precipitation over 0.1′′ during the monsoon (Jun 15 - Sept 30), 1985–2020.

From our participation in Pima County Hazard Mitigation
workshops, we were aware of flood response and emergency
management applications using these data. Given the potential
for accumulated flood risk following a series of days in a row
or a few days apart, the viewer and the fine-grained spatial and
daily temporal data it presents could be used to assess regions
that are likely to experience serious flooding were an additional
storm to occur. This could be linked to the information about
the saturation of soils, water already flowing in washes, or as is
the case with the 2020 Bighorn Fire, post-fire flooding on wildfire
scars. Participants at the workshop also identified cleanup and
recovery efforts as another application, given the impact that
floodwater can have in spreading sand and soil across roadways
after flood events. A more precise estimate of precipitation
location in conjunction with flow and wash data, could identify
hotspots for cleanup and recovery following localized intense
storm events.

The extreme spatial variability of the monsoon is also
a challenge for irrigation control and water harvesting. An
application could be useful to inform irrigation control and
management after a series of storm events, rendering additional
irrigation unnecessary. A map of spatial variability in the
monsoon could identify regions where water harvesting tanks
were likely to have filled given the location and intensity
of precipitation. Notices to homeowners could be provided,
especially if additional precipitation was in the forecast, with
appropriate caveats about monsoon variability.

Finally, the USA National Phenology Network produces
short-term forecasts of green-up in buffelgrass, an invasive grass
that creates substantial fire risk to native desert plant and animal
communities in the Southwestern US (https://usanpn.org/data/
forecasts/Buffelgrass). The buffelgrass Pheno Forecast is based
on known precipitation thresholds for triggering green-up to a
level where management actions are most effective. These maps
are updated daily using PRISM 4 km daily precipitation and
predict green-up 1–2 weeks in the future, primarily during the
summer monsoon period. Preliminary results indicate that the
4 km precipitation estimates provided by the PRISM dataset are
often too coarse to detect sub-grid scale precipitation events
that may trigger the green-up of local buffelgrass populations.
The CLIMAS team is working with the NPN to utilize the
monsoon viewer API to provide higher resolution precipitation
data across the Tucson metropolitan region. These data will be
used in conjunction with the PRISM precipitation grids to help
provide sub-grid scale precipitation data points to help trigger
and interpret bufflegrass green up forecasts.

On Collaboration Between
Computer/Natural/Social Science
Climate services development and climate adaptation and
impacts research has done well to encourage interdisciplinary
approaches that embrace collaborative processes (Meadow et al.,
2015; Owen et al., 2019) or which consider the type of
climate services and platform for their use (Visscher et al.,
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2020). This collaborative focus builds on the foundation
of well-articulated strategies regarding the role that data
management and computer science applications could play
in collecting, visualizing, and disseminating weather data
(National Research Council, 2003). This foundation has been
extended via emphasis on the global framework for climate
services (GFCS) and associated frameworks for connecting
data to users (Hewitt et al., 2012; Giuliani et al., 2017),
or by tracing the value chain of climate data through data
discovery, data integration, and the analysis, products and
services that extend from this chain (Giuliani et al., 2017).
Other work has emphasized design and interface issues,
highlighting the need to focus user experience and interface
(Christel et al., 2018).

The monsoon event viewer and API highlight the value
and necessity of integrating computer science expertise into
forward thinking climate services development. This provided a
mechanism to aggregate and organize data, as well as a means
to develop interactive design elements, with considerations of
user experience and interface. Our initial use of dense network
data demonstrated the utility of integrating information from
multiple sources, but it also quickly revealed that our preliminary
methods and approaches were not designed, much less capable, of
scaling to anything that would resemble an operational product.
We also learned it was important to integrate computer science
and application development expertise into the core project team,
to lead the database development process, and give guidance and
input on visualization options and best practices. Put simply,
this was more than tacking data science and aggregation onto
existing climate services and highlighted the value of building
and cultivating this collaboration early in the process. Regular
meetings that brought together this interdisciplinary team were
essential to discuss the database framework, design ideas for
the viewer, and opportunities for additional data analysis. This
process also identified technical challenges in managing the data,
or issues which might affect visualization strategies. This ongoing
dialogue allowed the team to identify priorities for version 1.0
of the visualizer, and to create a punch list of updates and
fixes for subsequent versions. The project collaboration was also
an opportunity for student training and experiential learning,
providing a real-world application to test out and deploy
innovative data aggregation, management, and visualization
techniques from their studies. Faculty researchers working on
the project also learned from this process, which helped them
better understand the technological limitations of the various
platforms, and how to integrate research questions into a feasible
data aggregation and visualization framework. They also learned
how to work with application/platform developers to revise the
data visualizer, and to improve accessibility in the data/API.
They also discussed existing and planned collaborations using
these data and the API, to help refine the database and API
development based on the needs of current or future stakeholder
partners. These meetings and discussions drove the iterative
development of the final platform and were a key part of our
collective identification of version 1.0 of the viewer, which sits at
the intersection of useful and technologically possible. Ongoing
work continues to expand on both fronts.

This project also demonstrates the potential for external
collaboration. We designed the visualizer and API with some
known priorities in mind, as well as some presumed end-
users who might be interested. We wanted the visualizer and
API to be responsive to end-user priorities and useful based
on expressed needs or gaps, but we also wanted to design
a standalone platform that would allow for as-yet unknown
end users to explore their own ideas for data visualization
and data access. As such, we included the ability to download
CSV files of the data, as well as an API for automated or
systematic use of the data outside of the visualizer. These are
still in beta with a soft launch of the monsoon viewer in
August of 2020. One of our goals was to make a platform
that would make these data widely accessible in a curated
format for those that wanted a visualized overview. We also
provide the raw data format via CSV download and the API
for those that wanted to access the data and conduct the
analyses themselves.
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APPENDIX

Referenced Technologies
Deck.gl docs – https://deck.gl/docs
React docs – https://reactjs.org/docs/getting-started.html
Express docs – https://expressjs.com/en/4x/api.html
Babel – https://babeljs.io/docs/en/
ES6 – https://www.ecma-international.org/ecma-262/7.0/
In Depth DOM – https://developer.mozilla.org/en-US/docs/
Web/API/Document_Object_Model/Introduction
AWS Lambda – https://docs.aws.amazon.com/lambda/latest/dg/
welcome.html
AWS S3 Hosting – https://docs.aws.amazon.com/AmazonS3/
latest/dev/WebsiteHosting.html
AWS RDS – https://docs.aws.amazon.com/AmazonRDS/latest/
UserGuide/Welcome.html
AWS EC2 Linux – https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/concepts.html
GRIB2 – https://confluence.ecmwf.int/display/CKB/What+are+
GRIB+files
MRMS – https://www.nssl.noaa.gov/projects/mrms/.

General Technical Overview/Appendix
There are several technologies required to gather, store, process,
and present the data. Here you will find commonly referred to
terms and services along with a short description of the functions
they perform and links to documentation.

• Lambda

◦ Serverless/headless infrastructure used to execute scripts
◦ Run code without provisioning or managing servers or

server instances.
◦ https://docs.aws.amazon.com/lambda/latest/dg/welcome.

html

• EC2

◦ An EC2 Instance is a cloud computing solution allowing us
to run various backend related tasks on a virtual machine

� This is equivalent to on premise server infrastructure
without the cost of new infrastructure or physical systems
administration needs.

◦ https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
concepts.html

◦ AWS EC2 Instance T3a.Large

� Memory: 8GB
� vCPU: 2
� Storage: 30GB
� OS: Red Hat Enterprise Linux release 8.2 Ootpa

• RDS

◦ Cloud based relational database service with the ability to
be hosted on scalable infrastructure that can be optimized
for memory or read/write performance.

◦ Multiple database engines can be utilized such as Amazon
Aurora, PostgreSQL, MariaDB, MySQL, Oracle, and
Microsoft SQL Server.

� This project uses MariaDB

◦ https://docs.aws.amazon.com/AmazonRDS/latest/
UserGuide/Welcome.html

• S3

◦ Scalable cloud-based object storage
◦ https://docs.aws.amazon.com/AmazonS3/latest/dev/

WebsiteHosting.html

• React

◦ Framework for building user interfaces built on JavaScript
◦ https://reactjs.org/docs/getting-started.html

• Node.js

◦ A runtime environment for running JavaScript server-side
built on Chrome’s V8 JavaScript engine.

◦ https://nodejs.org/docs/latest-v12.x/api/

• Express

◦ A framework for building backend web applications in
Node.js

◦ https://expressjs.com/en/4x/api.html

• Deck.gl

◦ A Web-GL JavaScript framework used for data
visualization.

◦ https://deck.gl/docs

• Python

◦ A high-level programming language
◦ https://docs.python.org/3/.
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